

2013 DOE Vehicle Technologies Program Review Presentation

Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

Matthew Barth

University of California Riverside

May 16, 2013

Project ID #

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start 10/1/2011
- End 9/30/2014
- 40% complete

Budget

- Total project funding
 - DOE \$1,210,235
 - Contractor \$665,472
- DOE funding in FY12
 - Received \$706,265
 - Expended \$389,496
- DOE funding for FY13 (as of January 31, 2013)
 - Received \$100,000
 - Expended \$81,246

Barriers

- Public acceptance
- Safety concern
- Cost Effectiveness

Partners

- ESRI
- NAVTEQ
- Beat the Traffic
- Earthrise Technology
- Automatiks
- U. of California Berkeley
- Riverside Transit Agency
- Caltrans

Relevance

- Overall project goal
 - To design, develop, and demonstrate a next-generation driving feedback system that will:
 - Improve fuel efficiency of the fleet of passenger cars and commercial vehicles by at least 2%,
 - Comply with federal safety and emissions regulations, and
 - Deployable across existing vehicle fleets.
- Project objectives over the past year (March 2012 March 2013)
 - Complete three modules of the system
 - Eco-Routing Navigation module
 - Eco-Driving Feedback module
 - Algorithm Updating module

Approach (1)

- Offer and encourage fuel-efficient choices to drivers/fleet operators in multiple aspects of their vehicular travel:
 - <u>Eco-Trip Scheduling module</u> allows fleets to plan a sequence of stops (e.g., for delivery) that is most fuel efficient.
 - <u>Eco-Routing Navigation module</u> suggests the most fuel-efficient route from one stop to the next.
 - <u>Eco-Driving Feedback module</u> provides sensible information, recommendation, and warning for fuel-efficient vehicle operation.
 - <u>Eco-Score and Eco-Rank module</u> provides platform for driving performance tracking, self-evaluation, and peer comparison.
- Fuel savings from individual modules can add up to a significant amount of savings.
- The modules make use of real-time information, highperformance computation, and advanced analytics.

Approach (2)

Approach (3)

- The system is:
 - Applicable to both fleet and consumer vehicles
 - Scalable from a few vehicles to a large number of vehicles
 - Compatible with multiple software platforms (e.g., Windows, Android)
 - Customizable due to modular software architecture

Approach (4)

Milestones for FY12 and FY13

Technical Accomplishments (1)

Eco-Routing Navigation module – software architecture

Technical Accomplishments (2)

Eco-Routing Navigation module – intersection delays

 Node costs (e.g., intersection delays & fuel consumption) are typically not accounted for in route calculation.

 They are defined in data structure based on turning movements (e.g., 16 turning movements for a typical 4-

way intersection).

Turn ID	From Link	To Link	Peak Delay (s)	Off-Peak Delay (s)
1	Α	Α	45	15
2	Α	В	60	20
3	Α	С	30	10
4	Α	D	35	12
5	В	Α	12	4
6	В	В	12	4
7	В	С	18	6
8	В	D	10	3

Technical Accomplishments (3)

- Eco-Routing
 Navigation
 module route
 evaluation
- when considering intersection delays, optimal routes tend to contain fewer turns and consist more of freeway driving.

With Intersection Delays

Technical Accomplishments (4)

Eco-Driving Feedback module – software architecture

Technical Accomplishments (5)

- Eco-Driving Feedback module user interfaces
- Simple and intuitive; similar to current vehicle dashboard, which should help reduce "eyes-off-road" time
- Feedback determined based on:
 - Actual fuel use (from vehicle's OBD-II)

Technical Accomplishments (6)

Eco-Driving Feedback module – effect of eco-speed

Real-world experiment on SR-91 in Southern California shows fuel savings of 13% for the eco-driving vehicle.

Energy/Emissions	Non Eco-Driving	Eco-Driving	Difference
Fuel (g)	1766	1534	-13%
CO2 (g)	5439	4781	-12%
CO (g)	97.01	50.47	-48%
HC (g)	3.20	1.90	-41%
NOx (g)	6.28	3.97	-37%
Travel time (min)	38.9	41.2	+6%

Technical Accomplishments (7)

- Eco-Driving Feedback module effect of road slope
- Sweet-spot speeds vary by road slope.
- Eco-speed is adjusted based on road slope.
 - Lower when on uphill
 - Higher when on downhill

Technical Accomplishments (8)

- Eco-Driving Feedback module aggressive acceleration warning
- Typical acceleration rates vary by speed
 - Higher mean at lower speeds
 - Higher standard deviation at lower speeds
- Warning provided when exceeding the preset acceleration rate for a speed (e.g., μ + 2 σ)

Technical Accomplishments (9)

 Algorithm updating module automatically generates and continuously self-updates fuel consumption curves based on real-world fuel consumption data from the

vehicle's OBD-II

 Adapt to changing driver behavior (as he eco-drives) and vehicle performance (as it wears out) over time

Technical Accomplishments (10)

Algorithm Updating module – progression of median curve

Technical Accomplishments (11)

- Algorithm Updating module comparison with fitted curve
- Trends of the median and fitted curves are similar.
- Median curve better captures fuel rate characteristic under transient traffic condition.
- At the same speed under 25 mph, driving on freeway consumes less fuel.

Collaborations & Coordination (1)

- Collaborations within the project
 - U. of California Riverside (university; prime contractor)
 - Conduct system R&D, lead system testing & evaluation
 - Esri (industry)
 - Provide trip scheduling & GIS software and technical support
 - NAVTEQ (industry)
 - Provide 3D digital map and real-time & historical traffic data
 - Beat the Traffic (small-business enterprise)
 - Model intersection delays using smartphone-based GPS data
 - Earthrise Technology (small-business enterprise)
 - Develop OBD-II interface software and provide technical support
 - Automatiks (small-business enterprise)
 - Configure connectivity between in-vehicle device and system server

Collaborations & Coordination (2)

- Collaborations within the project (continued)
 - Riverside Transit Agency (local government)
 - Provide fleet and staff support for system field operational test
 - California Department of Transportation (state government)
 - Provide fleet and staff support for system field operational test
 - University of California Berkeley (university)
 - Conduct expert interviews and drivers' perception surveys
- Coordination with other research programs
 - Eco-Driving research of the U. of California's Multi-campus Research Program and Initiative (MRPI)
 - Applications for the Environment: Real-Time Information Synthesis (AERIS) research of the Federal Highway Administration

Collaborations & Coordination (3)

- Collaborations outside the project
 - Worked with Nissan to develop method for quantifying fuel saving/GHG reduction benefits of eco-driving technologies
 - Interviewed 11 experts to obtain inputs for system design
 - California Department of Transportation [fleet management]
 - Daimler Trucks [R&D]
 - Environmental Protection Agency (2 experts) [policy]
 - Environmental systems Research Institute [R&D]
 - General Motors [R&D]
 - National Renewable Energy Laboratory [R&D]
 - Riverside Transit Agency [fleet management]
 - Westat [consulting]
 - University of Minnesota, HumanFIRST Program [R&D]
 - U.S. Department of Transportation [policy]

Proposed Future Work

Summary

- Project objectives over the past year have been achieved – three system modules completed.
 - Eco-Routing Navigation module
 - Eco-Driving Feedback module
 - Algorithm Updating module
- Initial testing of the individual modules shows promising results.
- The research team has tried to expand coordination of this DOE project with other research programs that target vehicle fuel efficiency improvements.
- The research team is well positioned for work planned next year.

Technical Back-Up Slides

Dynamic Roadway Network (DynaNet)

Road Grade Integration

One 2D link may have multiple road grade values

- Referring to sublinks by their sequences in the link
 - For more accurate link fuel consumption calculation
 - Does not increase the number of links in the shortest path calculation

	? Link_ID	? Sequence_Number	Distance	Grade
	23593103	1	10.106039718	537
-	23593103	2	26.005687704	524
	23593103	3	62.582112643	377
	23593560	1	67.28965307	-2391
	23593562	1	29.981222438	-1491
	23593562	2	37.464598654	-2333
	23593563	1	14.948617045	-5553
	23593563	2	12.955798930	-4963
	23593563	3	40.951709691	-3987

Link Fuel Consumption Calculator (1)

Step 1 – Convert EOPS curves into a look-up table.

 Step 2 – For each link k with n_k sublinks, calculate fuel consumption for each speed value v.

$$F_k(v) = \sum_{i=1}^{n_k} [f(v, g_i) \cdot d_i]$$

$$F = \text{fuel consumption (grams)}$$

$$f = \text{fuel consumption rate (grams/mile)}$$

$$d = \text{distance (miles)}$$

Link Fuel Consumption Calculator (2)

Fuel Consumption Rate Table

	SpeedBin	RoadGrade	Cost
١	0	-8	187.238095
	0	-7	192.457118
	0	-6	210.402039
	0	-5	224.123047
	0	-4	214.048577
	0	-3	235.82528
	0	-2	251.387097
	0	-1	268.351557
	0	0	289.247159
	0	1	309.971344
	0	2	335.693929
	0	3	374.249271
	0	4	400.709434
	0	5	435.071333
	0	6	470.510999
	0	7	508.995504
	0	8	549.376415
	1	-8	160.519417
	1	-7	166.121024
	1	-6	181.076072
	1	-5	193.312287

Road Grade Table

/ Link_ID	? Sequence_Number	Distance	Grade
23593103	1	10.106039718	537
23593103	2	26.005687704	524
23593103	3	62.582112643	377
23593560	1	67.28965307	-2391
23593562	1	29.981222438	-1491
23593562	2	37.464598654	-2333
23593563	1	14.948617045	-5553
23593563	2	12.955798930	-4963
23593563	3	40.951709691	-3987
23593564	1	17.862474289	-5281
23593564	2	41.914402483	-5373
23593713	1	26.972987721	-3145
23593713	2	31.611308980	-2475
23593715	1	126.709219131	-244
23593729	1	26.131533565	1843
23593729	2	28.673477730	1928
23593730	1	16.993153151	1623
23593730	2	49.836216191	1898

Link Fuel Consumption Table

	SourceID	OID	Speed_1	Speed_2	Speed_3	Speed_4	Speed_5	Speed_6	Speed_7	Speed_8	Speed_9	Speed_10
,	1	1	32.477308	29.411779	26.797038	24.556708	22.629101	20.964109	19.520811	18.265614	17.170802	16.213392
1	1	2	27.525607	24.927468	22.711387	20.812633	19.178922	17.767785	16.544541	15.48072	14.55283	13.741393
1	1	3	12.28586	11.126199	10.137067	9.289572	8.560376	7.930525	7.384539	6.90971	6.495553	6.133373
٦	1	4	12.439966	11.265759	10.26422	9.406094	8.667752	8.030001	7.477166	6.996381	6.577029	6.210307
1	1	5	84.139714	76.197778	69.423706	63.619633	58.625737	54.312203	50.573017	47.32115	44.484794	42.004409
٦	1	6	8.03816	7.279439	6.632288	6.077805	5.600721	5.188634	4.831416	4.520754	4.249787	4.012827
1	1	7	13.809019	12.505587	11.393826	10.441261	9.621662	8.913725	8.300049	7.766352	7.300849	6.893768
1	1	8	41.921622	37.964645	34.589544	31.697733	29.209583	27.060415	25.19741	23.577206	22.164025	20.928202
┪	1	9	15.241235	13.802617	12.575548	11.524187	10.619582	9.83822	9.160897	8.571847	8.058064	7.608762
┪	1	10	16.0196	14.507512	13.217777	12.112723	11.161921	10.340655	9.628741	9.009608	8.469587	7.997339
┪	1	11	6.493281	5.880381	5.357608	4.909693	4.524301	4.191414	3.902852	3.651897	3.433008	3.24159
┪	1	12	12.720456	11.519774	10.495652	9.618178	8.863188	8.211057	7.645757	7.154132	6.725324	6.350333
┪	1	13	4.149333	3.757678	3.423616	3.137389	2.891116	2.678395	2.493998	2.333633	2.193758	2.071439
┪	1	14	8.352052	7.563703	6.891281	6.315145	5.81943	5.391251	5.020084	4.697291	4.415742	4.169529
┪	1	15	2.931201	2.654526	2.418535	2.216337	2.042363	1.892091	1.761828	1.648542	1.549731	1.463321
┪	1	16	7.854003	7.112665	6.480341	5.938561	5.472407	5.069761	4.720727	4.417183	4.152424	3.920892
┪	1	17	24.445412	22.138013	20.169918	18.48364	17.032745	15.779519	14.69316	13.748383	12.924327	12.203691
1	1	18	15.873327	14.375046	13.097088	12.002124	11.060003	10.246236	9.540822	8.927343	8.392252	7.924317
┪	1	19	13.3725	12.110271	11.033654	10.111201	9.31751	8.631951	8.037675	7.520849	7.070061	6.675848
┨	1	20	28.125995	25.471186	23.206768	21.266598	19.597252	18.155336	16.905411	15.818386	14.870256	14.04112
┨	1	21	26.377985	23.888171	21.764484	19.944895	18.379297	17.026995	15.854752	14.835285	13.946081	13.168475
┨	1	22	25.847219	23.407503	21.326549	19.543572	18.009477	16.684385	15.535729	14.536775	13.665464	12.903504
┨	1	23	7.455193	6.751498	6.151282	5.637013	5.194529	4.812328	4.481018	4.192887	3.941572	3.721797
┨	1	24	10.68743	9.678645	8.818202	8.080968	7.446643	6.898738	6.423787	6.010734	5.65046	5.335402
┨	1	25	16.300637	14.762022	13.449661	12.32522	11.357738	10.522064	9.797661	9.167667	8.618171	8.137639
┨	1	26	19.72785	17.865741	16.277456	14.916601	13.745706	12.734331	11.857622	11.095171	10.430144	9.84858
┨	1	27	4.106343	3.718746	3.388145	3.104884	2.861163	2.650645	2.468159	2.309455	2.17103	2.049978
┨	1	28	14.665338	13.281079		11.08874	10.218317	9.466479	8.814748	8.247956	7.753586	7.321262
┨	1	29	14.801003	13.403938	12.100373	11.191319	10.210317	9.55405	8.896291	8.324255	7.825312	7.388988
┨	1	30	50.97456	46.163078	42.059126	38.542831	35.517368	32.904089	30.638769	28.668683	26.950327	25.44763
┨	1	31	29.290412	26.525694		22.147036	20.408579	18.906967	17.605295	16.473267	15.485885	14.622423
┨		32	3.046389	2.758841	2.513577	2.303433	2.122622	1.966445		1.713325		1.520825
┨	1			14.63098	13.330268				1.831063	9.086286	1.610631 8.541668	8.065401
4	1	33	16.155936 16.645788	15.074594	13.734445	12.21581 12.586196	11.256916 11.598228	10.42866 10.74486	9.710687	9.086286	8.800653	8.309946
┦	1											
┦	1	35	41.61385	37.685924	34.335601	31.465021	28.995138	26.861749	25.012421	23.404111	22.001305	20.774556
4	1	36	7.825808	7.087131	6.457077	5.917242	5.452761	5.051561	4.70378	4.401325	4.137517 8.36273	3.906817
4	1	37	15.817489	14.324478	13.051015	11.959903	11.021097	10.210192	9.50726	8.895939		7.896441
4	1	38	12.707393	11.507944	10.484874	9.608301	8.854086	8.202625	7.637906	7.146785	6.718418	6.343812
4	1	39	15.102141	13.676652	12.460781	11.419015	10.522666	9.748435	9.077293	8.493619	7.984525	7.539323
4	1	40	7.267821	6.581812	5.996682	5.495337	5.063975	4.69138	4.368397	4.087507	3.842508	3.628257
4	1	41	23.649531	21.417255	19.513236	17.881859	16.478202	15.265777	14.214787	13.30077	12.503543	11.80637
4	1	42	13.818897	12.514533	11.401977	10.44873	9.628545	8.920101	8.305986	7.771908	7.306072	6.8987
4	1	43	12.395573	11.225557	10.227591	9.372528	8.63682	8.001345	7.450483	6.971414	6.553558	6.188145
Ļ	1	44	12.395573	11.225557	10.227591	9.372528	8.63682	8.001345	7.450483	6.971414	6.553558	6.188145
Ļ	1	45	9.903452	8.968667	8.171342	7.488188	6.900394	6.39268	5.952569	5.569816	5.23597	4.944023
ļ	1	46	9.819638	8.892764	8.102186	7.424814	6.841995	6.338578	5.902192	5.522678	5.191657	4.902181
Ļ	1	47	26.931632	24.389559	22.221298	20.363517	18.76506	17.384374	16.187527	15.146662	14.238795	13.444867
1	1	48	16.456812	14.903456	13.578521	12.443307	11.466556	10.622875	9.891531	9.255502	8.700741	8.215605

28

Excessive Idle Warning

268-second idling at an activity location

85-second idling at a signalized intersection

- Need to differentiate idling events
 - Discretionary (e.g., at trip starts, trip ends, activity locations)
 - Non-discretionary (e.g., at traffic lights)
- Literature suggests a threshold of 120 seconds.